Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 15, 2026
-
Free, publicly-accessible full text available February 13, 2026
-
Microbial rhodopsin–derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)–opsin GEVIs use voltage-dependent quenching of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here, we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and Voltron2. We found that the previously reported negative-going voltage sensitivities of both GEVIs came from photocycle intermediates, not from the opsin ground states. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed the sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in the barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.more » « lessFree, publicly-accessible full text available January 10, 2026
-
Free, publicly-accessible full text available November 21, 2025
-
Free, publicly-accessible full text available December 27, 2025
-
Novelty and appropriateness are two fundamental components of creativity. However, the way in which novelty and appropriateness are separated at behavioral and neural levels remains poorly understood. In the present study, we aim to distinguish behavioral and neural bases of novelty and appropriateness of creative idea generation. In alignment with two established theories of creative thinking, which respectively, emphasize semantic association and executive control, behavioral results indicate that novelty relies more on associative abilities, while appropriateness relies more on executive functions. Next, employing a connectome predictive modeling (CPM) approach in resting-state fMRI data, we define two functional network-based models—dominated by interactions within the default network and by interactions within the limbic network—that respectively, predict novelty and appropriateness (i.e., cross-brain prediction). Furthermore, the generalizability and specificity of the two functional connectivity patterns are verified in additional resting-state fMRI and task fMRI. Finally, the two functional connectivity patterns, respectively mediate the relationship between semantic association/executive control and novelty/appropriateness. These findings provide global and predictive distinctions between novelty and appropriateness in creative idea generation.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available November 5, 2025
-
Excitable media, ranging from bioelectric tissues and chemical oscillators to forest fires and competing populations, are nonlinear, spatially extended systems capable of spiking. Most investigations of excitable media consider situations where the amplifying and suppressing forces necessary for spiking coexist at every point in space. In this case, spikes arise due to local bistabilities, which require a fine-tuned ratio between local amplification and suppression strengths. But, in nature and engineered systems, these forces can be segregated in space, forming structures like interfaces and boundaries. Here, we show how boundaries can generate and protect spiking when the reacting components can spread out: Even arbitrarily weak diffusion can cause spiking at the edge between two non-excitable media. This edge spiking arises due to a global bistability, which can occur even if amplification and suppression strengths do not allow spiking when mixed. We analytically derive a spiking phase diagram that depends on two parameters: i) the ratio between the system size and the characteristic diffusive length-scale and ii) the ratio between the amplification and suppression strengths. Our analysis explains recent experimental observations of action potentials at the interface between two non-excitable bioelectric tissues. Beyond electrophysiology, we highlight how edge spiking emerges in predator–prey dynamics and in oscillating chemical reactions. Our findings provide a theoretical blueprint for a class of interfacial excitations in reaction–diffusion systems, with potential implications for spatially controlled chemical reactions, nonlinear waveguides and neuromorphic computation, as well as spiking instabilities, such as cardiac arrhythmias, that naturally occur in heterogeneous biological media.more » « less
-
Abstract The Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project has a new very long baseline interferometry (VLBI) Outrigger at the Green Bank Observatory (GBO), which forms a 3300 km baseline with CHIME operating at 400–800 MHz. Using 100 ms long full-array baseband “snapshots” collected commensally during FRB and pulsar triggers, we perform a shallow, wide-area VLBI survey covering a significant fraction of the northern sky targeted at the positions of compact sources from the Radio Fundamental Catalog. In addition, our survey contains calibrators detected from two 1 s long trial baseband snapshots for a deeper survey with CHIME and GBO. In this paper, we present the largest catalogue of compact calibrators suitable for 30 mas scale VLBI observations at subgigahertz frequencies to date. Our catalogue consists of 200 total calibrators in the Northern Hemisphere that are compact on 30 mas scales with fluxes above 100 mJy. This calibrator grid will enable the precise localization of hundreds of FRBs a year with CHIME/FRB Outriggers.more » « lessFree, publicly-accessible full text available February 25, 2026
An official website of the United States government
